
A Circuit & Systems Technique: 

The Hilbert Transform 
by Jeff Crawford 

 

The Hilbert transform can be a powerful tool
1
 in the hands of any circuit designer or systems analyst.  In work related 

to networks it is possible only from resistance vs. frequency information to determine the associated reactance for a 

minimum-phase realization.  Equally powerful in systems analysis is the ability to determine the phase component vs. 

frequency for a transfer function based solely on gain magnitude versus frequency data.  With the phase information 

a qualitative assessment of the inherent group delay ( with the assumption of a minimum-phase network ) is at one's 

fingertips through the use of a central difference approximation to the first derivative, i.e. 
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The piecewise-continuous Hilbert transform will be used to synthesize the imaginary part of an impedance from only 

the real part, and the respective phase from magnitude-only data versus frequency for a system transfer function.  

This can be extended to determine the associated group delay using [ 1 ] above.   

 

 

The Piecewise Hilbert Transform 

 

 

Each resistance and reactance value of a network can 

be represented by a finite series of the form given in 

[2] and [3].   

 

     

   

R w a r r R

X w b w r

Q k k Q

k

N

Q k k

k

N

  

 









 0

0

1

0

[2, 3] 

 

Each rk is a positive or negative real number 

describing the known resistance excursion of the kth 

straight line-segment between the frequency 

breakpoints k-1 and k of the piecewise linear 

representation of R(  ) by RQ(  ).  Referencing 

Figure 1, each rk is determined by evaluating the 

difference between the resistance values Rk and 

Rk - 1 at frequencies k and k-1.  In the case of a 

system transfer function, each rk is the difference 

between neighboring values of the transfer function's 

magnitude, | H( jk ) | and | H( jk-1) |. 

 

Referencing equation [2], it is not necessary to 

calculate the set { ak } to determine the reactance 

versus frequency function XQ(  ).  The { ak } take 

on differing values depending upon what frequency is 

of interest.  For frequencies below k-1,  k is 

identically zero, while for frequencies above k, the 

ak is identically 1.   
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  for  k = 1 to n 

 

In the case of determining the reactance from the 

resistance as a function of frequency, the { rk } and 

{ ak } are readily determined because all the needed 

information is provided.  It is necessary, however, to 

use the Hilbert transform relation in [5] to determine 

the associated reactive component, XQ(  ), at each 

respective frequency.   

 
Figure 1 

Piecewise Representation of Real( Z ) 
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An expression for R is readily available from [1], 

therefore the operation indicated in [5] above can be 

carried out explicitly.  We start by rewriting [ 2 ] as 
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Using the expression in [ 1 ] developed for RQ, the derivative operation is applied and the following simplifications 

identified. 
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Review of equations [ 6 - 8 ] shows that the only element entering into the calculation with a non-zero contribution is 

that for which the frequency  lies in between the frequencies k-1 and k.  Performing the derivative operation on 

equation [7] gives the intermediate result in [9].   
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Substituting this expression into the integral relationship of [ 5 ] gives the following result. 
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The linear operations of summation and integration may be interchanged to give the complete expression required to 

evaluate the imaginary part from the real part. 
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The part of the expression in brackets can be viewed to be equal to the coefficients { bk } with the final 

simplification for XQ being expression [ 12 ]. 
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The integral in [11] has a closed-form solution
2
, given in [13] and [14], which further simplifies the end result.  

Furthermore, a minor transformation of variables given in [15], can be employed
3
 which prevents errors when the 

argument of the log function is one or zero.   
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or more concisely: 
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Actual Applications  

of the Hilbert Transform 

 

In the opening paragraph of this article mention was 

made of the utility of the Hilbert technique in several 

areas.  As an example and an aide to give increased 

insight into the technique, two different applications 

of the method will be outlined here.  In the first 

method the real part of a rational polynomial in s ( s = 

j ) will be used to generate the minimum phase 

realization reactance, and compared with the exact 

reactance calculated from the seed polynomial used.  

In the second application the magnitude of a rational 

polynomial in s will be used to illustrate the utility of 

the technique to derive the phase of a transfer 

function based solely on the magnitude versus 

frequency data.  First principles are used to design a 

fifth-order chebyshev bandpass filter from which its 

magnitude response is obtained.  The synthesized 

phase is then used to determine the filter's group 

delay.  These calculations are then compared to an 

"exact" method of group delay calculation for this 

family of filters.   

 

Case 1:  Synthesis of Minimum Phase Reactance 

from Resistance versus Frequency Data 

 

The expression used in this example is [16].  The 

coefficients were selected to display a rapid change in 

both the real and imaginary parts of the polynomial.  
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Performing the Hilbert transform operation, using as 

input the real part of [16] over frequency, gives the 

results shown in Figure 3.  In this figure, the exact 

calculation for the reactance is compared with that 

derived from the Hilbert technique.  Figure 4 

illustrates the comparison of phase angle for the 

impedance, using as comparison the exact 

calculations from the beginning relationship in [ 16 ]. 
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Figure 2 

Impedance versus Frequency of Equation [ 16 ]. 
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Figure 3 

Synthesis of Reactive Component Comparison 

 

 

 

 

 

 

Case 2:  Synthesis of Phase Angle from Magnitude-

Only Data versus Frequency 

 

In this example the magnitude versus frequency 

performance of a fifth-order chebyshev bandpass 

filter is used to synthesize the respective phase over 

frequency.  Although the details will not be discussed, 

a model for the bandpass filter which includes Q-

losses is used to give a more accurate magnitude 

representation of the true bandpass filter response;  

the required calculations are illustrated in the 

Appendix. 

 

The filter is described as fifth-order, passband ripple 

of 0.5 dB, unloaded resonator Q of 500, and ripple 

corner frequencies of 45.0 and 55.0 MHz, 

respectively.  The magnitude response is illustrated in 

Figure 5 over frequency. 
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Figure 5 

Bandpass Response of Candidate Chebyshev Filter 

 

 

Performing the Hilbert technique on the magnitude response illustrated in Figure 5 gives the respective phase shown 

in Figure 6.  As seen in this figure, the phase is  linear, corrupted through the passband by the large passband ripple 

used in the filter's design.  Had the ripple used in the design been more reasonable to present a better in-band VSWR, 

i.e. ripple on the order of < 0.1 dB, the phase response would be much more monotonic without variation.  A 

comparison of the group delay calculated with the Hilbert technique, and the group delay of the filter using the 

known pole locations of the chebyshev filter, is shown in Figure 7.  The gross structure of the two curves is very 

similar, differing primarily in the finer details.   
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Figure 4 

Phase Angles of Impedances Compared 



5 

35 40 45 50 55 60 65
360

240

120

0

120

240

360

Frequency , MHz

P
h
as

e,
 D

eg
re

es

 
Figure 6 

Phase Response Through Filter Passband 
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Figure 7 

Comparison of Actual Group Delay and Group Delay Calculated via the Hilbert Transform 

 

A central differences approximation to the first derivative, equation [17 ],  is used to calculate the group delay from 

the phase information.   
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